Friction Stir Welding of API Grade X65 Steel Pipes

Zhili Feng*, Russell Steel**, Scott Packer** and Stan A. David*

* Oak Ridge National Laboratory, Oak Ridge, TN
** MegaStir Technologies, Provo, UT

April, 2005
Acknowledgement

- Research was sponsored in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program under contact DE-AC05-00OR22725 with UT Battelle, LLC.
- Technical and financial support of MegaStir Technologies.
Why FSW of Pipeline Steels

- Ultra high-strength steels
- Properties
- Productivities?
- Hydrogen issue
- Weld metal property matching the base metal
Material

- **API 5L Grade X-65 steel**
 - Common in oil and gas industry for pipelines
 - 0.08C-1.0Mn-0.235Si-0.04Al-0.016Nb
 - $C_{eq} = 0.14$

- **ERW Line Pipe**
 - OD: 12.75” (324 mm)
 - Wall thickness: 0.25” (6.35 mm)
 - Base metal properties per mill specification
 - Yield: 67 ksi
 - Ultimate tensile: 77 ksi
 - Elongation: 33%
Welding

- Polycrystalline cubic boron nitride (PCBN) tool
 - Shoulder diameter: 1”
 - Pin length: 0.22”

- Girth weld
 - Square butt joint configuration
 - No special groove preparation
 - Surface ground before welding
 - Single pass full penetration from OD

- Welding parameters
 - 500 - 600 rpm
 - 4 - 6 in/min
 - Welding forge force: 6500 lbf

- Special run-off tab to eliminate the exit hole on the pipe

- Argon shielding gas from the tool to protect weld from oxidation
Field deployable FSW system
Hydraulic internal support/fixture
Welding movie
Finished pipe
Finished pipe
Microstructure and Mechanical Evaluation

Scale: 1:5

12\times 3.14 = 37.7” Each section: 9” long after metallography samples

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Mechanical Testing

- **Tensile**
 - Room temperature
 - 3 cross-weld tensile: (1-in wide strip) API 1104
 - 3 Base metal at room temperature
 - Orientation: Axial
 - ASTM E8, rectangular flat
 - Full stress strain curve. Yield stress at 0.2% offset plastic strain and at 0.5% total strain

- **Charpy V notch: ASTM E23, 10x5x50 (sub-sized due to wall thickness)**
 - side V-notch through thickness
 - 3 repeats at each temperature.
 - Base metal: axial orientation @ -50, 0, 20C
 - HAZ: @ -50, 0, 20C
 - Weld: @ -50, -30, -20, -10, 0, and 20C
Tensile properties

- **Base Metal**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001: L/T Parent</td>
<td>0.2460x 0.2470</td>
<td>0.0508</td>
<td>1.00</td>
<td>66500</td>
<td>78700</td>
</tr>
<tr>
<td>002: L/T Parent</td>
<td>0.2350x 0.2470</td>
<td>0.0580</td>
<td>1.00</td>
<td>66300</td>
<td>77500</td>
</tr>
<tr>
<td>003: L/T Parent</td>
<td>0.2540x 0.2480</td>
<td>0.0630</td>
<td>1.00</td>
<td>68100</td>
<td>74800</td>
</tr>
</tbody>
</table>

- **Cross-weld**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>004: Cross Weld</td>
<td>1.0300x 0.2470</td>
<td>0.2544</td>
<td>20129.0</td>
<td>Base</td>
<td>Ductile</td>
</tr>
<tr>
<td>005: Cross Weld</td>
<td>0.9750x 0.2500</td>
<td>0.2437</td>
<td>18738.0</td>
<td>Base</td>
<td>Ductile</td>
</tr>
<tr>
<td>006: Cross Weld</td>
<td>1.0480x 0.2490</td>
<td>0.2510</td>
<td>20329.0</td>
<td>Base</td>
<td>Ductile</td>
</tr>
</tbody>
</table>
Samples failed outside the weld and HAZ during cross-weld tensile test
Charpy V-Notch Impact Test

<table>
<thead>
<tr>
<th>Charpy Test - ASTM E 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>007: Weld Centre Line</td>
</tr>
<tr>
<td>008: Weld Centre Line</td>
</tr>
<tr>
<td>009: Weld Centre Line</td>
</tr>
<tr>
<td>010: Weld Centre Line</td>
</tr>
<tr>
<td>011: Weld Centre Line</td>
</tr>
<tr>
<td>012: Weld Centre Line</td>
</tr>
<tr>
<td>013: HAZ</td>
</tr>
<tr>
<td>014: HAZ</td>
</tr>
<tr>
<td>015: HAZ</td>
</tr>
<tr>
<td>016: Parent</td>
</tr>
<tr>
<td>017: Parent</td>
</tr>
<tr>
<td>018: Parent</td>
</tr>
</tbody>
</table>

Item 07: Percent Shear: 100, 100, 100 / Mils Lat Exp: 88, 85, 91
Item 08: Percent Shear: 100, 100, 100 / Mils Lat Exp: 95, 95, 96
Item 09: Percent Shear: 100, 100, 100 / Mils Lat Exp: 92, 95, 90
Item 10: Percent Shear: 100, 100, 100 / Mils Lat Exp: 97, 98, 96
Item 11: Percent Shear: 100, 100, 100 / Mils Lat Exp: 88, 98, 93
Item 12: Percent Shear: 100, 100, 100 / Mils Lat Exp: 97, 93, 97
Item 13: Percent Shear: 100, 100, 100 / Mils Lat Exp: 94, 98, 88
Item 14: Percent Shear: 100, 100, 100 / Mils Lat Exp: 98, 92, 86
Item 15: Percent Shear: 100, 100, 100 / Mils Lat Exp: 64, 78, 64
Item 16: Percent Shear: 100, 100, 100 / Mils Lat Exp: 82, 84, 83
Item 17: Percent Shear: 100, 100, 100 / Mils Lat Exp: 84, 80, 77
Item 18: Percent Shear: 100, 100, 100 / Mils Lat Exp: 62, 56, 60
Charpy V-Notch Impact Test

- ASTM E23
- 10×5×50 mm, sub-sized
- All samples showed 100% shear
Weld Cross-Section Macro
The interface is not easily distinguishable under high magnification
Evidence of lack of bonding on the root face

- Relative small ~ 0.15 mm
- Oxide layer
- Did not affect the mechanical tensile and impact properties
Microstructure

Base Metal

05-0488-13 FSW Pipe Section 90 degrees BM

Stir zone

TMAZ

05-0488-10 FSW Pipe Section 90 degrees HAZ
Cross-weld section micro-hardness profile
Summary

- A portable, field deployable FSW system has been developed for successful welding of X65 pipe
- Fully consolidated weld joint can be obtained in a single pass
- Welding speed
- Microstructure/microhardness
- The girth show superior tensile and impact properties